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Chronic oxidative stress and oxidative damage of the cerebral microvasculature and brain cells has become one of the most
convincing theories in neurodegenerative pathology. Controlled oxidative metabolism and redox signalling in the central nervous
system are crucial for maintaining brain function; however, excessive production of reactive oxygen species and enhanced redox
signalling damage neurons. While several enzymes and metabolic processes can generate intracellular reactive oxygen species in the
brain, recently an O2

−-generating enzyme, NADPH oxidase 2 (Nox2), has emerged as a major source of oxidative stress in
ageing-related vascular endothelial dysfunction and neurodegenerative diseases. The currently available inhibitors of Nox2 are not
specific, and general antioxidant therapy is not effective in the clinic; therefore, insights into the mechanism of Nox2 activation and its
signalling pathways are needed for the discovery of novel drug targets to prevent or treat these neurodegenerative diseases. This
review summarizes the recent developments in understanding the mechanisms of Nox2 activation and redox-sensitive signalling
pathways and biomarkers involved in the pathophysiology of the most common neurodegenerative diseases, such as ageing-related
mild cognitive impairment, Alzheimer’s disease and Parkinson’s disease.

Introduction

With a growing ageing population, the number of people
with neurodegenerative diseases is steadily increasing [1].
Ageing-related neurodegenerative diseases are a group of
diseases characterized by the progressive loss of neurons,
leading to dysfunction of the central nervous system, and
include Alzheimer’s disease, Parkinson’s disease, amyo-
trophic lateral sclerosis and Huntington’s disease [2–5].
According to the World Health Organization, there are
nearly 35.6 million people living with dementia, and this
number is expected to double by 2030. Although the exact
mechanisms behind the damage and loss of neurons in
these detrimental diseases remain unknown, increasing
evidence has suggested that an ageing-associated
increase in the production of reactive oxygen species
(ROS) causes central nervous system oxidative stress,
microvascular dysfunction and neuronal damage [6, 7].

ROS include both free radicals, e.g. superoxide (O2·−)
and the hydroxyl radical (OH•), and nonradicals, e.g. hydro-
gen peroxide (H2O2) [8]. ROS can be produced by a number
of different means, including mitochondria [9], uncoupled
nitric oxide (NO) synthase [10], xanthine oxidase [11] and
NADPH oxidase [12]. They are short lived and can react
quickly with biomolecules to alter their activities. Low
levels of intracellular ROS are now recognized to have an
important role in the maintenance of normal cellular func-
tion and redox signalling [13]. However, an excess of ROS
results in oxidative stress, which involves damage to cellu-
lar components, such as lipids, proteins and nucleic acids,
and leads to the loss of biological function [13]. Although
there are several enzymes and metabolic processes that
can generate intracellular ROS, recently an O2·−-generating
enzyme called NADPH oxidase 2 (Nox2), which is con-
stitutively expressed in a variety of cell types in the
brain, including cerebral vascular endothelial cells, has
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emerged as a major source of oxidative stress in ageing-
related neurodegenerative diseases.

The vascular endothelium is a major target of oxidative
stress, and there is a close link between vascular
endothelial dysfunction and cognitive impairment [14–
17]. Nox2 is highly expressed in the endothelium, and
endothelial oxidative stress due to Nox2 activation in
response to environmental challenges increases cerebro-
vascular permeability and promotes leucocyte adhesion
and central nervous system inflammation. Indeed, altered
microvascular endothelial function has been recognized
as a key factor of advanced ageing and cognitive impair-
ment [14–17]. Several previous reviews have discussed the
importance of oxidative stress in the biology of ageing
[18–20]; therefore, the present review focuses on the
recent development in understanding the mechanism of
Nox2 activation, as well as the role of Nox2-derived oxida-
tive stress and redox signalling in the development of
age-related neurodegenerative diseases, such as mild cog-
nitive impairment (MCI), Alzheimer’s disease and Parkin-
son’s disease.

Mechanism of Nox2 activation and
the principle of Nox2 redox
signalling

Nox2 (a multicomponent enzyme) was originally discov-
ered in circulating phagocytic cells [21]. It consists of a
membrane-bound catalytic core called flavocytochrome
b558, consisting of gp91phox (β subunit), p22phox (α subunit)
and several cytosolic regulatory subunits called p40phox,
p47phox, p67phox and rac1 [22]. Nox2 is normally dormant in
resting phagocytes, but when facing a pathogen chal-
lenge (or phagocyte activation) the cytosolic subunits
translocate to the membrane and associate with
cytochrome b558 to activate gp91phox. Activated gp91phox

then uses NADPH as an electron donor to convert mole-
cular oxygen to O2·− (so-called oxidative burst) and to
eliminate the pathogen [23]. In the past 15 years, several
homologues of gp91phox have been identified and
renamed Nox to represent NADPH oxidase. Presently, the
Nox family includes seven members (Nox1–5 and Duox
1–2), with the original phagocytic gp91phox being named
Nox2. Each Nox is encoded for by a separate gene [8]. In
this review, Nox2 refers to the NADPH oxidase complex
containing gp91phox as the catalytic subunit. Nox1 was ini-
tially found in colonic epithelial cells [24], Nox3 is highly
expressed in the inner ear [25], Nox4 was first identified in
the kidney [26, 27], Nox5 is primarily expressed in testis,
spleen and lymph nodes [28], and Duox1 and Duox2 are
primarily expressed in the thyroid gland [29, 30].

Vascular tissue is rich in Nox isoforms. For example,
Nox1 is highly expressed in smooth muscle cells, Nox2 is
highly expressed in endothelial cells, and Nox4 and Nox5
are detected in both smooth muscle and endothelial cells

[31, 32]. The central nervous system also expresses Nox
isoforms, with Nox2 and Nox4 being the most prominent
isoforms detected in a variety of cell types, including
neurons, microglia and astrocytes [33–37]. Among these
Nox isoforms, Nox2 has been shown to be an important
source of O2·− production in cerebral arteries [38] and plays
a major role in cerebrovascular diseases [39]. In a mouse
model of stroke, treatment with apocynin or deletion of
Nox2 reduced infarct volume in the cortex and subcortex
after cerebral ischaemia–reperfusion in association with
reduced O2·− production [40, 41]. However, in the absence
of reperfusion, ROS production by Nox2 seemed not to
have a significant role in the pathophysiology of cerebral
ischaemia [42].

Table 1
Redox signalling pathways in mouse models of neurodegenerative
diseases

Strain Model Signalling pathways examined Reference

SAMP8 Ageing MDA, NO, GPx [146]
C57Bl/6N Sim Ageing MDA, 8-OHdG [72]

C57Bl/6 HFLD Protein carbonyl [79]
SAMP8 Ageing Protein carbonyl, TBARS [147]

C57Bl/6N Sim Ageing Protein carbonyl, MDA [148]
Balb/C Ageing GSH [149]

FVB/N Tg2576 8,12-iso-iPF2α-VI [150]
C57BL/6J LPS TNFα, IL-1β, Iba-1, MCP-1 [132]

C57BL/6J MPTP iNOS, 3-NT, 4-HNE [151]
C57BL/6J MPTP MAC-1, Iba-1, ED-1, 8-OHdG,

3-NT, iNOS, MPO
[134]

C57BL/6J LPS TNFα, IL-6, KC, IL-12, NO, nitrite,
p-p38

[143]

C57BL/6J MPTP MAC-1, iNOS, TNFα [143]

C57BL/6J MPTP iNOS, IL-1β, TNFα, CD11b, GFAP,
NF-κB

[152]

C57BL/6J MPTP ASK1, p-MKK4, p-JNK, GSH,
Daxx, DJ-1

[142]

C57BL/6J MPTP 4-HNE, 3-NT, GSH, GSSG [135]
C57BL/6J MPTP Nitrite [131]

C57BL/6J MPTP MAC-1, protein carbonyl [133]
C57BL/6 MPTP Bax, p53 [145]

C57BL/6J MPTP p-JNK, p-MKK4 [141]

3-NT, 3-nitrotyrosine; 4-HNE, 4-hydroxynonenal; 8,12-iso-iPF2α-VI, isoprostane;
8-OHdG, 8-Hydroxy-2′-deoxyguanosine; ASK1, apoptosis signal-regulating kinase
1; Bax, Bcl-2-associated X protein; CD11b, cluster of differentiation molecule 11b;
Daxx, death-associated protein; DJ-1, Parkinson’s disease protein; ED-1, clone ED1
CD68 microglial/macrophage marker; GFAP, glial fibrillary acidic protein; GPx,
glutathione peroxidise; GSH, glutathione; GSSG, oxidized glutathione; HFLD, high
fat lard diet; Iba-1, ionized calcium binding adapter molecule 1; IL-1β,
interleukin-1 beta; IL-6, interleukin-6; IL-12, interleukin-12; iNOS, inducible nitric
oxide synthase; KC, keratinocyte-derived chemokine; LPS, lipopolysaccharide;
MAC-1, macrophage antigen complex-1; MCP-1, monocyte chemoattractant
protein-1; MDA, malondialdehyde; MPO, myeloperoxidase; MPTP, 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine; NFκB, nuclear factor kappa B; NO, nitric oxide;
p-MKK4, phospho-dual specificity mitogen-activated protein kinase kinase 4;
p-JNK, phospho-c-jun N-terminal kinase; p-p38, phospho-p38 mitogen-activated
protein kinase; p53, tumour suppressor protein; TBARS, thiobarbituric acid reactive
substance; Tg2576, mouse model of Alzheimer’s disease amyloidosis; TNFα,
tumour necrosis factor alpha.
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Although Nox2 in nonphagocytic cells shares structural
similarity with the phagocytic Nox2, the regulatory mecha-
nism of Nox2 activation in nonphagocytic cells is com-
pletely different from that in phagocytic cells [43]. We have
reported that Nox2 in resting endothelial cells is already
partly pre-assembled and continuously generates very low
levels of O2·−, which is involved in redox regulation of
normal cellular functions [43, 44]. Phosphorylation of the
p40phox subunit has been found to be involved in maintain-
ing the basal Nox2 activity in nonphagocytic cells [45].
However, Nox2 in nonphagocytic cells can respond to a
variety of stimulants to become activated and cause oxi-
dative stress to cells and organs. Rac1 regulation of Nox2

activity and protein phosphorylation represent two of the
important mechanisms in Nox2 activation [46, 47]. Our
recent studies have shown that serine phosphorylation of
p47phox is a prerequisite for Nox2 activation in response to
stimulation by tumour necrosis factor α (TNFα) [48, 49],
angiotensin II [50, 51] and the protein kinase C activator
phorbol 12-myristate 13-acetate [49]. Furthermore, we
have discovered that the phosphorylation of p47phox at
serine residues S303, S304 and S379 plays a vital role in
initiating Nox2 activation and O2·− production under
pathological conditions [52].

In response to cellular challenges, such as growth
factors, inflammatory cytokines, cell stress such as
ischaemia–reperfusion and cytotoxic reagents, Nox2 is
activated, and the resulting increase in O2·− production
plays a key role in somatic cellular senescence and ageing
[53–55]. In terms of central nervous system inflammation,
Nox2 in microglial cells (the phagocytes in the brain)
is activated in response to neurotoxic stimulation, and
excessive ROS production causes neuronal damage.
However, microglial cells can respond to neuronal damage
and become further activated. This activation can be long
lived, self perpetuating and eventually kill the neuron [37].

The primary product of Nox2 is O2·−, which is short lived
and can react with several different molecules to form
other ROS, such as H2O2, OH•, hypochlorous acid (HOCl)
and peroxynitrite (ONOO−) [8]. Therefore, it is possible
that Nox2 redox signalling occurs through these second-
ary products rather than through O2·− itself [13]. Most
proteins involved in cellular signalling contain cysteine
residues or protein-bound metals, which are targets of
ROS modification [56]. Thiol chemistry plays an important
role in maintaining cellular redox homeostasis and there-
fore plays a key role in directing the redox signalling
pathways [13]. Redox signalling involves both reversible
and irreversible protein reactions. A good example of a
reversible reaction is protein phosphorylation and de-
phosphorylation, and a lot of protein kinases and
phosphatases are redox-sensitive targets (for details see
end of paragraph). ROS-induced irreversible reactions
include protein degradation or protein S-nitrosylation.
Oxidation of lipids, proteins, DNA bases and the sugar
backbones of DNA and RNA are mainly irreversible [13]. In
terms of neurodegeneration, protein S-nitrosylation has
been reported to be involved in redox-mediated post-
translational modification of proteins and causes synaptic
damage and brain cell death [57]. Recent studies from
others and ourselves have found that the most common
downstream targets of Nox2-derived ROS are mitogen-
activated protein kinases (MAPKs), such as the extracellular
signal-regulated kinase (ERK), c-Jun N-terminal kinase
(JNK) and p38 MAPK [48, 52, 58, 59]; protein kinase B [60–
63]; phosphoinositide 3-kinase [64]; nuclear factor κB
(NFκB) [65]; TNFα receptor-associated factor 4 [48]; and
signalling molecules involved in cell apoptosis, such as
p21cip1 and p53 [66].

Table 2
Redox signalling pathways in human neurodegenerative diseases

Diagnosis Signalling pathways examined Ref.

MCI LPO [89]
MCI MDA [87]

MCI MDA, GPx, catalase [85]
MCI SOD, GPx, MDA [95]

MCI MDA, nitrite and nitrate, GSSG [86]
MCI 3-NT [91]

MCI Protein carbonyl [153]
MCI 4-HNE [90]

MCI Protein carbonyl, TBARS, MDA [84]
MCI Vitamins A, C and E, uric acid, SOD, GPx [94]

MCI 8,12-iso-iPF2α-VI [88]
Alzheimer’s disease MDA [87]

Alzheimer’s disease MDA, GPx, catalase [85]
Alzheimer’s disease SOD, GPx, MDA [95]

Alzheimer’s disease MDA, nitrite and nitrate, GSSG [86]
Alzheimer’s disease iNOS, eNOS, nNOS, p53, UCP2,4,5,

mitochondrial complexes I–V, PPARα, δ, γ
[124]

Alzheimer’s disease 3-NT [154]
Alzheimer’s disease Protein carbonyl, TBARS, MDA [84]

Alzheimer’s disease 8-OH-adenine, 5-OH-cytosine, 5-OH-uracil,
8-OH-guanine

[155]

Alzheimer’s disease 3-NT [156]

Alzheimer’s disease Vitamin A, C and E, uric acid, SOD, GPx [94]
Alzheimer’s disease 8,12-iso-iPF2α-VI [88]

Alzheimer’s disease p-p38 [123]
Parkinson’s disease 8-OHdG [157]

Parkinson’s disease p-p38, p-JNK [144]
Parkinson’s disease NF-κB [152]

Parkinson’s disease p-Src, p-HSP27, p-JNK [158]
Parkinson’s disease Glutathione reductase [159]

Parkinson’s disease TBARS [160]
Parkinson’s disease p-ERK1/2, p-p38, p-JNK [140]

3-NT, 3-nitrotyrosine; 4-HNE, 4-hydroxynonenal; 8,12-iso-iPF2α-VI, isoprostane;
8-OHdG, 8-Hydroxy-2′-deoxyguanosine; eNOS, endothelial nitric oxide synthase;
GPx, glutathione peroxidise; GSSG, oxidized glutathione; iNOS, inducible nitric
oxide synthase; LPO, lipid hydroperoxide; MCI, mild cognitive impairment; MDA,
malondialdehyde; NFκB, nuclear factor kappa B; nNOS, neuronal nitric oxide
synthase; p-ERK, phospho-extracellular signal-regulated kinase; p-HSP27,
phospho-heat shock protein 27; p-JNK, phospho-c-jun N-terminal kinase; p-p38,
phospho-p38 mitogen-activated protein kinase; p-Src, phospho-proto-oncogene
tyrosine-protein kinase; p53, tumour suppressor protein; PPAR, peroxisome
proliferator-activated receptor; SOD, superoxide dismutase; TBARS, thiobarbituric
acid reactive substance; UCP, uncoupling protein.
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Oxidative stress and redox
signalling in ageing-related mild
cognitive impairment

Oxidative stress has been seen to play a major role in the
mammalian ageing process and is the result of an imbal-
ance between pro-oxidant and antioxidant levels. There
has been extensive research looking at levels of various
oxidative stress biomarkers during ageing; for example,
protein carbonyls to detect protein oxidation [67–69],
malondialdehyde (MDA) to detect lipid peroxidation [68,
70, 71] and 8-hydroxy-2’-deoxyguanosine to detect DNA
oxidation [72, 73]. Levels of tissue ROS have also been
found to increase with ageing [74, 75], along with
decreases in various antioxidants, such as vitamins A and
C, and antioxidant enzymes, such as superoxide dismutase
and glutathione peroxidase [76–78].

During the normal ageing process, a progressive
decline in cognitive function linked with multi-organ
oxidative stress has been observed in numerous experi-
mental studies, implicating that cognitive impairment may
be associated with ageing-related oxidative damage in the
brain. For example, increased O2·− production in the brain
was found in ageing mice (24 months old) in association
with significant cognitive impairment [74]. More recently,
another study reported increases in ROS production, lipid
peroxidation and nucleic acid oxidation in ageing mice (23
months old) in correlation with a decline in learning and
memory [72]. A high-fat lard diet further exacerbated cog-
nitive decline in aged mice (24 months old), and this was
associated with high levels of oxidative stress in the
hippocampus [79].

Mild cognitive impairment (MCI) is generally character-
ized as a memory deficit abnormal for the individual’s age.
Clinical diagnosis criteria include the following: (i) memory
complaint, preferably corroborated by an informant; (ii)
objective memory impairment for age and education; (iii)
normal general cognitive function; (iv) intact activities of
daily living; and (v) no evidence of dementia [80]. MCI is
generally seen as a transitional state between normal cog-
nitive ageing and dementia and is frequently associated
with the development of Alzheimer’s disease, with annual
conversion rates of MCI to Alzheimer’s disease of ∼10–15%
[81, 82]. Ageing is a strong risk factor for both MCI and
Alzheimer’s disease, with prevalence for MCI estimated to
be 1% at age 60 years and increase to 42% by age 85 years
and prevalence for Alzheimer’s disease estimated to be 1%
at age 60 years and increase to 25% by age 85 years [83]. As
previously mentioned, age-related increases in oxidative
stress have been widely reported, and evidence is emerg-
ing for the role of oxidative stress in the pathogenesis of
MCI and Alzheimer’s disease.

High levels of oxidative stress related to cognitive
decline have been observed. For example, in patients with
MCI, increases in protein carbonyl content and MDA were
found in the superior and middle temporal gyri, which

were indicative of protein oxidation and lipid peroxi-
dation, respectively [84]. Increased peripheral MDA has
been found in erythrocytes, serum and plasma [85–87] of
patients with MCI. Other markers of lipid peroxidation
include: the isoprostane 8,12-iso-iPF2α-VI, which has been
found to be significantly increased in the plasma, cere-
brospinal fluid and urine of MCI patients [88]; lipid
hydroperoxide, which has been found to be increased in
the serum of MCI patients [89]; and 4-hydroxy-2-nonenal,
which has been found to be increased in the hippocampus
and inferior parietal lobules of MCI patients [90].

Nitrosative stress is also seen in ageing. Increased
3-nitrotyrosine levels were found in the hippocampus and
inferior parietal lobule of aged patients (88 ± 3.8 years old)
with MCI, which is indicative of protein nitration [91]. One
of the major causes of protein nitration is the reaction with
peroxynitrite, which is a potent oxidizing and nitrating
agent produced by the reaction of superoxide and nitric
oxide. Increased expression of inducible nitric oxide
synthase has been found with ageing in mice (22 months
old), which led to increased levels of nitric oxide that can
react readily with the abundant superoxide present [92].

MCI is associated not only with an increase in pro-
oxidants, but also with a decrease in antioxidants. Several
studies have shown a decrease in levels of non-enzymatic
antioxidants, including vitamins A, C and E and uric acid,
and a decrease in activity of antioxidant enzymes, includ-
ing superoxide dismutase and glutathione peroxidase, in
serum and plasma of patients with MCI [93–95]. In fact, a
report has found a direct correlation between antioxidant
depletion and cognitive deterioration [86].

Nox2 is a major source of oxidative stress involved in
the development of ageing-related MCI. Nox2 expression
has been found to be increased in the superior and middle
temporal gyri of patients with MCI and in the brain of
ageing mice (23 months old) [96, 97]. Aged mice
overexpressing the amyloid precursor protein (12–15
months old) exhibited signs of cognitive decline and had
significantly increased levels of Nox2-derived superoxide
production in the brain [98]. There is a linear relationship
between cognitive decline and Nox2 activity [99, 100].
Moreover, increased expression of the Nox2 subunits
p47phox and p67phox has also been reported in the temporal
cortex of MCI patients, which again correlated strongly
with a decline in cognition [101]. These findings strongly
support a substantial role for Nox2-derived oxidative stress
in the development of cognitive impairment.

Oxidative stress and redox
signalling in Alzheimer’s disease

Alzheimer’s disease is the most common form of dementia
and is characterized by progressive memory loss, cognitive
impairment, aphasia (language disturbance), apraxia
(impaired ability to carry out motor activities despite intact
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motor function), agnosia (failure to recognize or identify
objects despite intact sensory function) and disturbance
in executive functioning (i.e. planning, organizing, se-
quencing and abstracting) [102, 103]. Alzheimer’s disease
is associated with accumulation of amyloid plaques
and neurofibrillary tangles constituted by highly phos-
phorylated tau proteins in the brain, and the loss of
neurons from the hippocampus and cerebral cortex [104].
Nox2 activation in brain tissue and Nox2-derived oxidative
damage has emerged as an important mechanism in the
pathogenesis of Alzheimer’s disease [105, 106].

Alzheimer’s disease is strongly linked with accumula-
tion of the protein β-amyloid, and there is a close relation-
ship between the levels of β-amyloid and Nox2 activity
[100, 107]. Cerebral amyloid angiopathy characterized by
deposition of β-amyloid in the cerebrovasculature is
present in 80–100% of Alzheimer’s disease cases [108].
β-Amyloid is toxic to brain endothelial cells, leading to the
loss of blood–brain barrier integrity. Increased expression
of Nox2 and oxidative stress were found in activated
microglia surrounding β-amyloid-laden capillaries from
patients with capillary cerebral amyloid angiopathy [108,
109]. In addition, neuronal cell viability was shown to be
significantly decreased in the presence of β-amyloid, and
this effect was attenuated in the presence of a Nox2 inhibi-
tor, apocynin [97]. However, it is important to note that it
is still disputable whether the mode of action of apocynin
is as an antioxidant or as a Nox2 inhibitor [110–114].
Apocynin has been shown to have a neuroprotective
effect in mouse models of ischaemia and amyotrophic
lateral sclerosis; however, in a model of Alzheimer’s
disease it did not improve behavioural or neuropat-
hological deficits despite causing a reduction in oxidative
stress in the cerebral cortex [115–117]. In a mouse model
of Alzheimer’s disease with overexpression of the amyloid
precursor protein, the level of superoxide production in
the brain was significantly increased in association with
neurovascular dysfunction and behavioural deficits, and
these were significantly attenuated in mice with Nox2 defi-
ciency [98]. Nox2-derived oxidative stress has also been
found to play a major role in mediating β-amyloid protein-
induced neuronal death and neurovascular dysfunction
[118, 119].

A variety of stimuli, such as bacterial components,
inflammatory cytokines, β-amyloid peptide and other neu-
rotoxins, have been shown to activate Nox2 and induce
ROS production in brain tissue [37, 120]. Increased ROS
production activates downstream signalling pathways,
such as ERK1/2 and the phosphorylation of cytosolic
phospholipase A2α [121]. Overactivation of cytosolic
phospholipase A2α is believed to contribute to the patho-
genesis of a number of neurodegenerative diseases,
including Alzheimer’s disease [122]. Other redox-sensitive
MAP kinases, such as p38 MAPK, have also been found to
be upregulated in the brains of patients with Alzheimer’s
disease [123]. More recently, an increase in the expression

of p53, a redox-sensitive apoptosis-related molecule, has
been found in the brain tissue of patients with Alzheimer’s
disease, and this was associated with increased nitric
oxide synthase and Nox1 and Nox3 expression [124]. The
amyloid precursor protein involved in Alzheimer’s disease
pathogenesis has been seen rapidly to activate JNK, ERK
and p38 MAPK in rat microglial cells in association with
increased inducible nitric oxide synthase expression [125].
Stimulation of rat pheochromocytoma (PC12) cells with
β-amyloid activated the NFκB, ERK and p38 MAPK path-
ways, which was associated with increases in intracellular
ROS production, the levels of expression of apoptotic pro-
teins p53, Bcl-2-associated X protein and caspase-3, and
downregulation of the anti-apoptotic protein Bcl-2 [126].
β-Amyloid has also been found to activate the NFκB
pathway by selectively inducing the nuclear translocation
of p65 and p50 subunits in human neurons [127].

Oxidative stress and redox
signalling in Parkinson’s disease

Parkinson’s disease is a movement disorder characterized
by bradykinesia, rigidity, resting tremor and postural in-
stability and is associated with the progressive loss of
dopaminergic neurons from the substantia nigra region
in the midbrain [15, 128, 129]. The aetiology and under-
lying mechanisms of Parkinson’s disease are still under
investigation but increasing evidence is emerging for the
involvement of Nox2-derived ROS and oxidative stress.
Ageing is a strong risk factor for oxidative stress and the
development of Parkinson’s disease. Nox2 is highly
expressed in microglial cells [130] and to a lesser extent in
dopaminergic neurons [33]. Nox2 has been found along
with degeneration of dopaminergic neurons and is impli-
cated in the development of Parkinson’s disease [131,
132].

Several studies carried out in mice have used admini-
stration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), which selectively destroys the
nigrostriatal dopaminergic pathway, as a model of Parkin-
son’s disease [131, 133–135]. One such study showed that
Nox2 expression was upregulated both in MPTP-treated
mice and in patients with Parkinson’s disease, indicating
a crucial role of Nox2 in the MPTP-induced loss of
dopaminergic neurons [133]. A ROS scavenger, ethyl
pyruvate, was found to improve MPTP-induced motor
deficits by attenuating Nox2 activation, ROS production,
microglial activation and neuronal loss. The mechanism
involved was found to be in part due to the inhibition of
p47phox phosphorylation and the subsequent binding of
p47phox to gp91phox [134].

Studies of other mouse models have also been
carried out, and a transgenic mouse model of Parkinson’s
disease has recently been created with mutations in
leucine-rich repeat kinase 2 (LRRK2), which is the most

NADPH oxidase 2 and neurodegenerative diseases

Br J Clin Pharmacol / 78:3 / 445



common genetic cause of Parkinson’s disease. These
LRRK2R1441G transgenic mice exhibit the key characteris-
tics of Parkinson’s disease, including age-dependent and
levodopa-responsive slowness of movement along with
impaired dopamine release [136]. A recent study found
that treatment of these transgenic mice with diapocy-
nin, a Nox2 inhibitor, alleviated symptoms of early Parkin-
son’s disease; in particular, motor co-ordination and
balance [137]. However, due to the high concentration
of diapocynin required to inhibit hydroethidine oxida-
tion to 2-hydroxyethidium, the exact mechanism
behind the effects of diapocynin in these mice remains
unknown [137]. As mentioned previously, the mecha-
nism of apocynin and diapocynin action needs further
investigation.

The molecular mechanisms regulating dopaminergic
neuronal cell death are not yet fully understood, but evi-
dence suggests an important role of ROS. Increased ROS
production and MAPK activation, including p38 MAPK and
ERK1/2, has been seen to be involved in dopaminergic cell

death [138]. In an experimental model of Parkinson’s
disease, increased phosphorylation of JNK and p38 MAPK
was evident as well as increased apoptosis in human
dopaminergic SH-SY5Y cells [139]. Likewise, activation of
ERK1/2, JNK and p38 MAPK was found in brains of patients
with Parkinson’s disease [140]. In the MPTP animal model
of Parkinson’s disease, increased levels of JNK and MKK4
phosphorylation were found to be associated with activa-
tion of apoptosis signal-regulating kinase 1 and a decrease
in DJ-1, the Parkinson’s disease-associated neuroprotec-
tive protein [141, 142]. MAPK-activated protein kinase-2
(MK2) is a downstream target of p38 MAPK. A recent study
has shown that neurodegeneration can be prevented in a
mouse model of lipopolysaccharide-induced Parkinson’s
disease by eliminating MK2 [143]. In that study, it was also
discovered that increased production of inflammatory
mediators, such as TNFα, keratinocyte-derived chemokine,
interleukin-6 and nitric oxide, with lipopolysaccharide
administration was associated with decreased levels
of tyrosine hydroxylase-positive neurons, and this was
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attenuated in MK2−/− mice [143]. In mice treated with
MPTP, p38 MAPK activation was found to induce p53
phosphorylation and nuclear translocation, and this sub-
sequently increased activity of the p53-upregulated
modulator of apoptosis and Bcl-2-associated X protein
[144]. Inhibition of p53 activity improved motor function,
reduced damage to nigrostriatal dopaminergic neurons
and prevented the increase in Bcl-2-associated X protein in
MPTP-treated mice, and this in turn protected against
MPTP-mediated cell death in human primary neurons
[144, 145]. Put together, these data strongly support the
pivotal roles for Nox2 and oxidative activation of p53 in the
pathophysiology of Parkinson’s disease.

Conclusion

The pathophysiology of the most common neurodege-
nerative diseases, such as ageing-related MCI, Alzheimer’s
disease and Parkinson’s disease, involves multiple factors
that cause the deterioration of the central nervous system
throughout the ageing process. Existing endothelial dys-
function and metabolic disorders contribute to the exac-
erbation of the clinical symptomatology. Although precise
cellular and molecular mechanisms underlying these dis-
eases are still largely unknown, oxidative stress due to the
activation of Nox2 in the neurovascular endothelium,
microglia, neurons and other brain cells represents one of
the key features and common determinants responsible,
at least in part, for the pathological process of these dis-
eases. Figure 1 is a schematic summary of factors dis-
cussed in this review that are involved in the pathogenesis
of common neurodegenerative diseases. The redox signal-
ling pathways discussed in this article are listed in Table 1
for experimental animal studies and in Table 2 for clinical
human studies. Understanding the mechanism of Nox2
activation and its redox signalling pathways will help the
discovery of novel specific drug targets to slow down the
progress and, eventually, to treat these detrimental
neurodegenerative diseases.
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